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Abstract. In electron-positron plasmas some of the plasma modes are decoupled due to
the equal charge-t~mass  ratio of both species. We derive the dispersion law for a low-
frequency, generalized X-mode, which exists at all angles of propagation with respect
to the static magnetic field. Its nonlinear evolution is governed by a Korteweg-de Vries
equation, valid at all angles of propagation except strictly parallel propagation, for which
a different approach leads to a vector form of the modified Kortew,eg–de Vries equation.
The nonlinearity is strongest at perpendicular propagation. Ultrarelativistic  effects are
discussed,
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1 . Introduction

Electromagnetic waves in relativistic plastnas  pertaining to magnetospheres
of pulsars and active galactic nuclei have been investigated rather inten-
sively in the literature (Sturrock,  1971; Max and Perkins, 1972; Max, 1973;
Kennel and Pellat,  1976; 13uti, 1978; Sweeney and Stewart, 1978; Lakhina
and Buti,  1981; Asseo, 1984; I,ominadze  et al., 1983; Shukla, 1985; Stenflo
et al., 1985; Shukla et al., 1986; I,akhina  and Tsintsadze, 1990; Shukla and
Stenflo, 1993). Large-amplitude Alfv6n waves propagating parallel to the
external magnetic field in relativistic electron-positron have been studied by
Sakai and Kawata (1980 a, b), Mikhailovskii  et al. (1985 a,b,c) and Verheest
(1996). The selfconsistent  analysis of Verheest (1996) showed that the evo-
lution of nonlinear parallel Alfv6n modes is described by a vector form of a
modified Korteweg–de  Vries (n~KdV) equation.

Since large-amplitude, lo~v-frequency  modes are most suited for the accel-
eration of charged particles to very high energies (Kennel and Pellat,  1976;
Asseo,  198-1; Lakhina and Tsintsadze, 1990), it is of practical interest to
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4 i[lvestigate  also the nonlinear evolution of large a[nplitude  obliquely propa-
gating  modes. In a previous paper (Verheest and Lakhina,  1996), we studied
large-amplitude Alfv4n modes propagating at an arbitrary angle to the exter-
nal magnetic field in a cold, relativistic electron-positron plasma. We noiv
include also pressure and ultrarelativistic  effects, for both cases of parallel
and oblique (including perpendicular) propagation.

Because in pulsars the magnetic field can be large, both the gyrofrequen-
cies and the Alfv6n velocity can be comparable to the pl~sma frequencies or
the speed of light, respectively. Although in the initial phase of our investiga-
tions we have not imposed a particular polarization for the nonlinear waves
under study, the low-frequency reductive perturbation analysis automatical-
ly picks out the generalized extraordinary (X) mode which \ve discuss.

The paper is organized as follows. in Section 2 we delineate the theoretical
model and briefly discuss the linear modes in a magnetized electron-positron
plasma, propagating at arbitrary angles to the static field. A low-frequency
generalized X-mode is decoupled from the other modes, at all angles, the
nonlinear evolution of which is given in Section 3 for parallel propagation
and in Section 4 for oblique propagation. In the parallel case one obtains
a nonintegrable  vector form of the n]KdV equation, whereas truly oblique
propagation is governed by a KdV ecluation.  Finally, our conclusions are
formulated in Section 5.

2. Theoretical model and linear modes

Our model is that of a plasma immersed in a uniform magnetic field, and
composed of equal numbers of electrons and positrons. We will look at phe-
nomena propagating along the z–axis, so that all quantities depend only on
z and t. To include also the possibility of oblique modes, we take B. = lloe~,
with e~ = sin Oer + cos tie= the unit vector along the static magnetic field.
l’he basic fluid equations (Mikhailovskii  et al., 1985b) include the continuity
equations,

and

(%lQ a
~ + -j#ldaz)  = o, (1)

the equations of motion,

(2)

IIere E and B are the electric and magnetic fielcls, and the label Q charac-
terises the electrons (a = e, with charge q. = –e and upper signs in the
equations) and the positrons (a = p, with qp = e and lower signs), with
densities na, mass densities p., pressures Pa and velocities UQ. For the mass

IJv6.tex  - Ilate:  July 11, 1997 I’inle:  9:33



b densities, defined  as

(3)

w’here  fa is the mass energy density, and the pressures in an ultra relativistic
description we need in addition

The  description is closed by Maxwell’s equations

(9E i3B
‘Zxz+z-=o’

(6)

OB (?E e
)c2ez x — = — + ––(7tp Up — Ttel.le ,

8.? 13t El)
(7)

(9E,
—  =  :(np-ne).
82

(8)

Before going to the nonlinear development, we look at linear wave propaga-
tion, by linearizing and Fourier transforming the relevant equations (l)-(8).
This yields an intricate wave equation, which can be split into two different
parts, however. One of these corresponds to an electromagnetic wave with
electric field perpendicular to the plane containing both the wave vector k
and the static field Bo, decoupled from the other wave phenomena. This
mode has dispersion law

W6 – WA(W; + f12 + k2c2 + PC:)
+ w2(k2c2f22 + Pc:w; + Fey COS20 + FC2C:)

— k4c2c:f22 COS2 g = O . (9)

l’he relativistic plasma frequency WP is defined through w; = 2N2C2/COpO
(see Sakai and Kawata, 1980 b), taking electrons and positrons together, with
Ar = Are = NP the equilibrium density and p. the equilibrium mass density.
Similarly, the relativistic gyrofrequency is for both species Q = eNBo/po,  in
absolute value. Finally, the thermal velocity c, is given through C$ = yPo/po.

It turns out that (9) has a high-frequency as well as a low-frequency
branch. For the latter, the long-wavelength limit shows that the linear phase
velocity V obeys

V4(LJ: + !-P) – 202 COS2 @@(cq-p + C:CJ; + c,

+ c2c;fP  COS2 i? = o. (lo)

17v6.tex  - Date:  JLIly 11,  l!)gi’ Tinle: 9:33



‘! G.S,  I, AKlllNJ\ & E’. VI:, I{ II I; I;S’I’

In the limit of parallel propagation (0 = O) olLe obtait~s (besides a spurious
root) the Alfv6n mode, with

(11)

show’ing the proper definition for the Alfv6n velocity in an elect ron-positrorl
plasma. For perpendicular propagation (0 = 900), (10) reduces to

(12)

giving the fast magnetosonic velocity (together with a spurious root zero).
This tallies with recent work on magnetosonic modes in multispecies dusty
plasmas (Meuris and Verheest, 1996), if results are specialized to equal-mass
plasmas.

Since the mode described by (9) corresponds at perpendicular propaga-
tion to part of the X–mode, but exists ~ a separate entity at all angles
of propagation, we call it a generalized X–mode. In ordinary plasmas the
X--mode cannot be factorized, and for oblique propagation all modes are
mixed together.

The other components of E, those in the plane spanned by k and Bo,
obey a complicated dispersion law, which we shall not discuss further.

3 . Nonlinear evolution: parallel propagation

As the dispersion law (9) only contains even powers of k and w, there is
a quadratic correction in k to the linear phase velocity, resulting in the
standard Korteweg-de Vries (Kd V) stretching

~ = &(z -- Vt), T = &3t. (13)

At 0 = O we will use for all variables an expansion of the type

f= F+ Ef~+&2f2+... (14)

Substitution of the stretching (13) and the perturbation expansions (14)
into the equations (l)–(8) gives a sequence of equations, upon equating the
coef%cients of the various powers of c. To lowest nonzero order we find for
the parallel-type quantitie~  that

V2(C2 –  c:) Bf,
ne2 = nP2 = N — .

2C2(V2 – c:) B; ‘

V2(V2 + C2)(C2 – c:)
Pe2 = Pp2 = PO 2c4(v2  – c:)
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VZ(C2 –  @) fi
P,,2 = 1;2 =poc:—

2C2(V-C:) }J: ‘

(1.5)

showing that to this order there is charge neutrality, without it having been
assumed from the outset. Turning now our attention to the perpendicular
variables leads to

(16)

having used Faraday’s equation (6). Inserting all obtained expressions into
the perpendicular components of Amp&re’s  equation (7), \ve find to orders 2
and 3 that it indeed vanishes due to the definition (11) of the phase velocity
V. To order 4 we obtain the nonlinear evolution equation

(17)

This looks like a cross between a vector version of an mKdV equation and
a I)NLS equation, and has been discussed in the cold-plasma limit before
(Verheest,  1996). For linear polarization, where Bll retains a fixed direc-
tion, we recover the n]KdV equation given by hlikhailovskii et al. (198,5 b),
although other polarizations are possible (Verheest,  1996). When projecting
(17) out in normalized form, with all coefficients unity, and going over to a
complex representation of the \vave magnetic field ~ = BZ1 + ZBU1,  we find
the complex mKdV equation (Karney  et al., 1978), which is in general not
integrable.

4. Nonlinear evolution: oblique and perpendicular propagation

At truly oblique propagation (0 # O and sin O finite) the generalized .Y--
mode is such that to all orders the electron and positron quantities obey

ne = nP, P e  = PpJ Pe = 1;,
[Ler =  Upr, u

(18)
eg = -– UL, Y, ‘rlez = Upz.
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This means that we can restrict ourselves to the positron  cluantities from the
outset and drop the species index for the sake of brevity. Analogous results
hold for the wave fields, with

E= = E. = o,

q = o, B= = Bp (19)

Thus we need only consider the following set of fluid equations,

(20)

together with the nonzero Maxwell’s equations

(?EY _ 8BZ—. —
82 at ‘

~’~= ~+ ~u,. (21)

Our generalized X-mode is characterized by zero currents and electric fields
in the plane containing the static magnetic field and the direction of propaga-
tion, and also by strict quasi-neutrality, due to the low-frequency approach,
but not really assumed to begin with.

As now the usual KdV expansions are adhered to (see the discussion in
the cold-plasma case, Verheest and Lakhina,  1996), we take

n = hr+&2n2+&4n4  +...,

p=/kl+S2p2 +&4@t+”””1

~=~o+&2~2+&4~4+...,

U* =  A@  +&4ur4 +  . 0 .  ,

u ~ =  E3uu3+&5zLv5+ ..4,

u= = S2UZ2+S4UZ4+ ...,

B. =  Blo +s2Bz2 +  S4BA +  0..,

L’u = E2EY2  +54EU4+ ... (’2’2)
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Substitution of the stretching (13) and the perturbation expansions (22) into
theecluations  (20)-(21) now gives to lowest nonzero order that

N IZ2 [)22 sin 0

110 (V2 –Z~ ‘

pO(C2  + c~)V213.z  sin O
Il@2(v2-c:cos219)  ‘

2 ‘2 & sin tipot, 1
BC)(V2 – c: COS2 2’?) ‘

V(V2 – C:)II*2  Cos 1?— ———
BO(V2 – c:COS20) ‘

V2(V2 – c:) 6’BZ2
!-IBO(V2 – C: COS2 r?) 82 ‘

V3BrZ sin O

BO(V2 – c; COS2 q’
– Vl?zz, (23)

and Ampbre’s  law vanishes to order 3 in E, as now V obeys (12). Note in
particular the relativistic correction in the mass density p2.

Going further through the algebra to order 5, essentially along the lines of
our previous paper (Verheest and Lakhina, 1996), we deduce a KdV equation

(24)

with coefhcients

A =

c =

D=

On taking

{ }
+ (V2 - c$cos2 ti)2$ + (V2 - c~)2cos2 ti + V4sin2 O ,

P
sin O

2BOC2 (V’2 -- c: COS2 ?9) { (3 V4 – 2V2C: + c: C O S2 0) (C2 – C!)

+V2c$sin2  d[c2(-y + 4) - 6c~]} ,

(V2 - C:)2
2~2 “

(25)

c: = O, i.e., under the cold plasma limit, (24) becomes identical to
the KdV equation derived by Verheest and Lakhina (1996). At perpendicular
propagation, the coefficients A and D can be derived from the corresponding
expressions in nonrelativistic multispecies plasmas (Meuris and Verheest,
1996), when specializing those to equal-mass plasmas. Iiow’ever, C reads in
the perpendicular case as

C=*{3V2(1-$)+(7 -2)C:} (26)
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a[ld there is a relativistic correction (in c~/cz), which can beconle  quite
itnportant  in the ultra relativistic Iinlit.

5 . Conclusions

Itl Sections 3 and 4, we have derived the evolution equations for the parallel
propagating Alfv4n modes and the obliquely propagating generalized X-
modes. We shall now discuss the implications of the ultrarelativistic  limit
on the solution of these evolution equations in some simple cases.

Let us first discuss the special case of linear polarization for which (17)

reduces to the mKd V equation of Mikhailovskii  et al, (198,5  b). Such mKdV
actuations only have super-Alfv6nic  soliton solutions of sech-type, provided
the coefllcient of the nonlinear term is positive, since the other terms already
have positive coefficients. Looking at (17), one sees that C* – c: and V* – C:
should have the same sign for solitons to exist. Since C* > V* from (11),
this implies either the ordering C* > V2 > c: for supersonic relativistic
solitons,  or c: > C * > V* for subsonic ultrarelativistic  solitons. Indeed,
the ultrarelativistic  limit corresponds to taking Ib/&o >> 1 such that the
pressure due to ultra-high temperatures greatly exceeds the rest mass energy
density of electrons or positrons. Such a limit appears to be relevant for
the conditions existing in pulsar magnetospheres (Sturrock,  1971; Kennel
and Pellat,  1976). In the ultrarelativistic  limit, c: R -yc2. Note that -y =
1 corresponds to the isothermal case, and 5/3 to an adiabatic case. This
means that in the ultrarelativistic  limit (and ~ > 1), supersonic Alfv6n
solitons cannot exist, but linearly polarized subsonic Alfv6n solitons are
possible, although they are otherwise not allowed in relativistic plasmas, as
had already been noted by Mikhailovskii et al. (]985b).  In addition, there is
a forbidden regime when no solitons at all can exist, namely C2 > c: > V2,
shedding another light on the transition to ultrarelativistic  electron-positron
plasmas. For a further discussion of possible values for -y, see the recent paper

by Gratton  et al. (1997).
For the oblique modes, we note from (24) and (25) that the coeflcients

A and D are positive definite, irrespective of whether the plasma is ultrarel-
ativistic  or not. For perpendicular propagation, C > 0 for cold relativistic
plasmas, but C < 0 in the ultrarelativistic  limit for all reasonable values
1 < ~ as seen from (26), provided that Q2 < 2w~. On the other hand, for
f22 >> w; we find C <0 for 1 ~ -y <4.3. Hence in ultrarelativistic  electron-
positron plasmas perpendicularly propagating Alfv6n solitons of sech2-type
have a different nature (cortlpressive/rarefactive,  although these terms are
not really appropriate for the changes in magnetic field here) compared to
cold relativistic plasmas (Verheest  and Lakhina, 1996). In addition, there is
also the possibility in the ultra relativistic case that the coefficient C can be
positive for some oblique angles, different from exact perpendicular propa-
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gation.  ‘1’hcrl (2.1) would pcrtrlit  the existence of oblique Alfv6n  solit,ons  of

tile same nature asin cold relativistic plasn]as.
The nonlinear Alfv6n solitor~s  studied here tvould  be relevant for inter-

preting the microstructurein  the pulsar racliation or subpulses. One of the
mechanisms for pulsar radiation is the synchrotrons radiation produced by
bunches of electron/positron streaniing  along the magnetic field lines. The
subpulses  can arise by the modulation of high-frequency synchrotrons radi-
ation by
electrons
energies.

low-frequency Alfv6n  solitons. Inte;actiot;  of Alfv6n solitons with
can lead to heating and acceleration of electrons to cosmic ray
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